
Journal of AUoys and Compounds, 185 (1992) 207-219 207 
JALCOM 24P 

Electromigration and residual resistivity of hydrogen in row 
5 and 6 transition metals 

J. van Ek and A. Lodder 
Faculteit der Natuurkunde en Sterrenkunde, Vrije Universiteit, De Boelelaan 1081, 
1081 HV Amsterdam (Netherlands) 

(Received November 25, 1991) 

Abstrac t  

Both the electromigration wind valence and the residual resistivity for hydrogen in all 
row 5 (yttrium to silver) and row 6 (lanthanum to gold) transition metals were calculated. 
Host metals with a hexagonal lattice have been treated in the f.c.c, or b.c.c, structure. 
The Korringa-Kohn-Rostoker-Green function method, used to describe the multiple 
scattering of Bloch electrons, accounts for charge transfer and lattice deformation around 
the interstitial hydrogen. 

1. I n t r o d u c t i o n  

Diffusive motion of interstitial and substitutional impurities in metals, 
being random in itself, can be directed by applying an electric field E to 
the sample. The susceptibility of the impurity to E is given by the effective 
valence Z* of the impurity in a certain metal. Thus the phenomenological 
expression for the driving force F in electromigration reads as 

F =Z*e E  (1) 

The elementary charge e-=]e] equals 21~ in Rydberg atomic units used 
throughout (h = 1, me--½), unless otherwise indicated. In the theory of elec- 
tromigration a distinction is usually made between two contributions to the 
driving force, as follows. 

The direct force Fcnrect=ZdirecteE m e a s u r e s  the electrostatic force on the 
impurity in the electron gas. Although the direct force constitutes a conceptually 
simple quantity, the question whether or not impurity screening is complete 
(i.e. Fdirec t - - 0 )  is at the basis of fierce debate in electromigration literature 
[1-91. 

In dilute metal-impurity systems Bloch electrons in the current are 
scattered by impurity-induced defect clusters in the lattice. This impurity 
scattering gives rise to finite mean-free-path lengths for the electrons in 
Bloch states. At low enough temperatures the electric current is given by 
the field divided by the residual resistivity Po. In the simple ballistic picture 
the current-carrying electrons form the so-called electron wind. The ballistic 
model [1, 2] assumes that a free electron gas at density n does gain a 
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momentum of - n ~ e E  per unit volume. The transport relaxation time ~ is 
characteristic for the electron gas under consideration. During collisions of 
the electrons with impurities, at density hi, this momentum gain is transferred 
to the impurities at a frequency equal to the inverse impurity relaxation time 
~-1. The average force on the impurities thus reads F ~ d  = -(n~'/ 
ni~i )eE-- - (npo/n ip)eE,  since for free electrons p a t  -1 and pOaTi -1, and 
will point in a direction opposite to that of the external field. This is the 
wind force. 

Summarizing, the driving force in eqn. (1) can be written as the sum 
of a direct and a wind part 

F -- F~ect + F ~ d  = (Za~ect + Z~d)eE (2) 

Only the sum Z*=Z~e¢t+Z,~a can be obtained from experiment (for an 
overview see ref. 10). 

The direct force is not very accessible through a computational study. 
The treatment of self-consistent screening of an impurity cluster is a com- 
plicated problem involving interacting electrons in scattering states at all 
energies. Above all it is not clear how the direct force should be extracted 
from the self-consistent scattering states. On the other hand, scattering 
quantities for Bloch electrons at the Fermi energy eF in principle can be 
calculated within a multiple-scattering formulation, given a potential. Among 
these are the wind valence Z ~ d  and the residual resistivity po. 

The research field of hydrogen in metals has known a period of great 
interest [ 11 ]. Now that experimental activity in the field has declined, some 
unclarified but intriguing observations are still calling for an explanation. 
For instance the observed differences in sign of Z ~ d  in the group 5b transition 
metals vanadium, niobium and tantalum as well as the small but significant 
H-D isotope effect in Z* in these metals [12] but also in nickel [13] and 
palladium [14] can be mentioned. In turn it is surprising that the residual 
resistivity in the hydrides of these metals does not show a measurable isotope 
effect [15-17]. 

This paper is devoted to dilute metal-hydrogen systems. From a com- 
putational point of view these systems form an attractive subject. First of 
all, the multiple-scattering problem for an impurity cluster embedded in an 
otherwise perfect metallic host can be solved (see for instance refs. 18 and 
19). In this Korringa-Kohn-Rostoker(KKR)-Green function approach the 
band structure as well as charge transfer and lattice deformation are accounted 
for. Further, the lack of self-consistent impurity potentials for interstitial 
hydrogen might well be counterbalanced by the relative simplicity of the 
electronic structure of the hydrogen atom. 

In Section 2 the method used in calculating Z,c~d and P0 from the alloy 
wave function will be outli, d briefly. In section 3 results of calculations of 
these two quantities for h y d r t  "~n in all fifth- and sixth-row transition metals 
will be presented. A discussion of some general trends is given in Section 
4. Also attention is paid to cases where experimental data exist. Section 5 
summarizes the main points made in this paper. 
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2. Ou t l in e  o f  t h e  m e t h o d  

The deviation from the equilibrium distribution function for the electrons, 
linear in the externally applied field, reads as 

( gnk = -- eA~k.E ~e ] (3) 

The vector mean free path /ink applies to electrons in states labelled n k  at 
energy enk. Since at moderate temperatures the negative energy derivative 
of the Fermi-Dirac distribution function f°(e)  can be approximated by a 
delta function at ef, summations over all states weighted by g,,k reduce to 
Fermi surface integrals. This greatly facilitates the calculation of transport 
properties that are related to the electron current. 

In order to calculate the matrix elements occurring in the expression 
for the wind force [20] 

F~nd(R,) -- ~gnk(  ~ k ( r ;  R1)[- V m v , ( r -  RI)I ~ k ( r :  R1)} 
nk 

= _Z~nd(R1)eE (4) 

solutions ~ k  to the SchrSdinger equation for the perturbed crystal 

(H  eryst~ - enk + AV) ~ k  = 0 (5) 

are needed at e~k = eF. The potential v~ of the migrating atom in the force 
operator -VR~ vl(r--R~) in eqn. (4) is also contained in the total perturbing 
potential AV. The crystal hamiltonian H c~yst~ =p2 + VCryst~ is the usual single- 
particle hamiltonian for the perfect crystal in the local density approximation. 

The solution to eqn. (5) is obtained in terms of the crystal or host 
Green function G cry~t~ and the Bloch wave functions ~F~k as the unperturbed 
reference-system wave functions. The formal operator expressions read as 

~nk = ~nk + V cry~t~ A V ~ k  (6) 

with 

(502 _{_ vcrys ta l  __ e F ) G  crystal ____ 1 (7) 

and 

(p2 + V~ry~_ er) qZ~k = 0 (8) 

When both V Cmt~ and AV are muffin tin (MT) potentials eqn. (8) gives the 
famous KKR equations [21, 22] while eqn. (6) can be developed [18] to 
yield 

~ k ( X  + 1~) = ~,RpL(X)A~Lj,L, Cj,L,(nk) (9) 
/~'L' 

with host wave ftmction coefficients CjL(nk) at lattice site j ,  L -  = (l, m), 
backscattering matrix A and regular solutions RpL(X ) pertaining to the MT 
potential centred around Rp. The A matrix contains all multiple-scattering 
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effects induced by the perturbing potential. Detailed information on how this 
complex quantity (in both senses) is actually calculated can be found elsewhere 
[18, 23, 24]. 

For MT potentials the integration over direct space in eqn. (4) can be 
evaluated analytically [20]. After replacement of the summation over states 
labelled n k  by a Brillouin zone integral, vectorial Fermi surface integrals 
that remain are of the type 

1 f dSnk I~z~,L,---- VB--~z ~ C*L(nk)A~kCp,L,(nk) (10) 

and can be calculated efficiently using point group symmetry [25]. 
Interestingly integrals of the same type as eqn. (10) occur in the evaluation 

of the residual resistivity from the vector  mean free path A~" in electron 
impurity scattering: 

4 f dSnk 
p0 -1 - (2~r)a ~ vnk×A~ p (11) 

FS 

It is therefore not surprising that residual resistivity programs have been 
developed simultaneously with the wind force programs [26]. 

Although A ~  p and thus P0 can be calculated truly ab initio, this is not 
the case for A~k in eqn. (3) to which all dissipative scattering mechanisms 
contribute. If the isotropic relaxation time approximation [27] is invoked, 
A~k equals ~v,k. The velocities are available (often strongly anisotropic over 
the Fermi surface) and • is then calculated from the measured bulk conductivity 
at temperature T through 

4~ 1 
dS~kv~k (12) P(T)-I= (2~r) 3 3 

FS 

The integral in eqn. (12) is evaluated over the Fermi surface of  the pure 
host, obtained from a KKR calculation. 

The potentials used in this work have been constructed from overlapping 
self-consistent relativistic atomic charge densities [28, 29]. The Slater exchange 
factor a= 1 was used. The KKR programs underlying the calculation of 
~ k  for a given potential are non-relativistic. However, relativistic contraction 
effects in the orbital resolved charge densities are fully present in the atomic 
potentials, thus leading to relativistic contributions to the crystal potential, 
albeit in a non-self-consistent fashion. A previous study of  the de Haas-van 
Alphen effect in Pd(H) [23] showed that potentials constructed in this way 
lead to a Fermi surface comparable with or even better than that resulting 
from the self-consistent potential of Moruzzi et al. [30]. For all the metals 
it has been verified that all parts of the Fermi surface that are not  due to 
spin--orbit coupling are present with acceptable shapes (see for instance ref. 
25 for niobium and palladium). 

Charge neutrality in the system was imposed by requiring fulfilment of 
the generalized Friedel sum rule [31 ]. In practice [24] this was attained by 
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shifting the potentials of  the first shell by a constant  amount  of energy until 
the total screening charge associated with the cluster potential was Z =  1 

for  hydrogen. 
Comparison of ab i n i t i o  calculated residual resistivities with experimental 

data served in judging the quality of the potentials. 

3. Re su l t s  

Fifth-row transition metals (yttrium to silver) are characterized by a 
krypton noble gas core electron configuration and valence electrons in bands 
originating in 4d and 5s atomic orbitals. The first transition metal in row 6 
is lanthanum with the [Xe]5d16s 2 electronic configuration for the free atom. 
Lanthanum differs from the rest  of the row 6 metals in that it does not have 
a filled 4f shell in addition to the xenon part  of the core. The 4f shell is 
filled in the lanthanide series separating lanthanum from hafnium. It is known 
that f electrons are not very efficient in screening the nuclear charge [32, 
33[, resulting in a s tronger attractive potential as seen by the electrons in 
the 5d6s valence shell. Relativistic contraction of mainly the valence s orbitals 
is an effect which points in the same direction. Along the columns of the 
periodic table this shows up in large changes of the lattice parameters  when 
going from row 4 to row 5, but only small changes when going from row 
5 to 6. Without except ion the crystal structures for pairs of row 5 -6  transition 
metals are the same, but the bonding energy per atom in row 6 is higher 
[34]. 

The structural similarity along the columns in the two rows offers the 
possibility of  a direct comparison between Bloch electron scattering by 
hydrogen-induced defect clusters, as has been done earlier for Nb(H) vs .  

Ta(H) [24]. Being limited to f.c.c, and b.c.c, crystal structures all hexagonal 
lattices have been treated as in the f.c.c, structure. Only Zr(H) and Hf(H) 
have been studied in both the f.c.c, and b.c.c, structures. The lattice constants 
of the alternative structures are chosen in such a way that the atomic volume 
in the metal was left unchanged [30]. Whenever  the difference in lattice 
parameter  was less than 0.06 u the average value was taken for both metals. 
Table 1 shows the crystal structure, the lattice parameters  and the Fermi 
energies as measured from the MT zero. The last column gives the valence 
electron configuration as used in the construction of the crystal potential. 
In order  to retain enough of the scattering power of  the interstitial the host 
MT radii are reduced from touching spheres to 0 .325a  for f.c.c, and 0 .335a  
for b.c.c, metals. Here a is the lattice constant. 

The equilibrium position for hydrogen in yttrium and lanthanum is the 
tetrahedral site in the true hexagonal structure. This was carried over to the 
f.c.c, structures, replacing the hexagonal lattice in the present  calculation. 
The tetrahedral position in the f.c.c, lattice has Td point group symmetry. 
The same assumption was made for the other  hexagonal metals (zirconium, 
hafnium, technetium, rhenium, ruthenium, osmium). In the b.c.c, lattice the 
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TABLE 1 

Lattice structures, lattice parameters a, Fermi energies ~F and atomic configurations as used 
in computing Z~nd and Po 

Metal Structure a eF Atomic 
configuration 

Y f.c.c. 9.632 0.386 4d15s 2 
La f.c.c. 10.031 0.350 5d16s 2 
Zr b.c.c. 6.804 0.650 4d~5s ~ 
Hf b.c.c. 6.734 0.740 5d26s 2 
Zr f.c.c. 8.572 0.545 4d25s e 
Hf f.c.c. 8.484 0.634 5d26s 2 
Nb b.c.c. 6.238 0.852 4d45s 1 
Ta b.c.c. 6.238 0.927 5d36s 2 
Mo b.c.c. 5.962 0.997 4d55s ~ 
W b.c.c. 5.962 1.129 5d46s 2 
Tc f.c.c. 7.278 0.764 4dS5s 2 
Re f.c.c. 7.352 0.934 5d56s 2 
Ru f.c.c. 7.214 0.780 4dV5s 1 
Os f.c.c. 7.214 0.963 5d66s 2 
Rh f.c.c. 7.189 0.759 4d95s ° 
Ir f.c.c. 7.254 0.948 5dS6s 1 
Pd f.c.c. 7.351 0.515 4d95s ~ 
Pt f.c.c. 7.408 0.778 5d96s 1 
Ag f.c.c. 7.722 0.527 4dl°5s 1 
Au f.c.c. 7.722 0.713 5d'°6sl 

hydrogen  a tom occup ies  the te t ragonal ly  dis tor ted te t rahedra l  pos i t ion  (point  
g roup  D2d). The oc tahedra l  posi t ion (Oh) is the equil ibrium site for  small 
interstitials in f.c.c, lattices. The interstitial MT radii are 0 .108a ,  0 . 2 2 4 a  and 
0 . 1 7 5 a  for the Td, D2d and Oh sites respectively.  

In the presen t  s tudy  only Z ~ d  and P0 values at the equil ibrium sites 
will be presented.  Nevertheless  it is perfect ly  possible  to follow the impuri ty  
in its zero-point  mo t ion  and  to pe r fo rm a quan tum mechanica l  averaging 
with a probabi l i ty  densi ty  function.  In this way  even an exper imenta l ly  
observed  H - D  isotope effect in Z* [12] and the lack o f  this effect in Po [17] 
could  be explained [24, 26].  

At oc tahedra l  and te t rahedral  sites in the f.c.c, lattice _Zwind(Ri) (see 
eqn. (4)) is an isotropic  diagonal  tensor.  This does  no t  hold for  the  b.c.c.  
equil ibrium site. It  was  shown that, when  the migra t ion  path  of  the p ro ton  
is taken  into account ,  only  one c o m p o n e n t  of  the anlso t ropic  diagonal  t ensor  
contr ibutes  [24]. The calculated scalar  wind-valences  are given in the third, 
four th  and  fifth co lumns  of  Table 2. Residual resistivities obta ined  f rom the 
iterative solut ion of  the Bol tzmann equat ion ( typically 4 - 1 0  i terat ions)  are 
shown in co lumns  6 - 8 .  Both  for  Z,,~d and  Po each  t ime the  results  for  three  
impuri ty  cluster  conf igurat ions  are given. First jus t  the  impuri ty  in a per fec t  
lattice, then  the impuri ty  plus charge  t ransfer  to  the  first shell and finally 
also a slight radial outward  d isp lacement  o f  the  first shell were accoun ted  
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for. In the present calculations values of 0.01a around the octahedral position 
in an f.c.c, metal and 0.02a around the tetrahedral position in f.c.c, and 
b.c.c, lattices were used. This choice for the displacements was prompted 
by the self-consistent effective-medium calculations of Puska and Nieminen 
[35]. The site occupied by the proton is indicated in the second column of 
Table 2. There is no need to account for a second shell of surrounding 
atoms [36-38]. 

In most cases the atomic ground state configuration as given in the 
periodic table of the elements was used in constructing the crystal potentials. 
Exceptions are made for the Pd-P t  and Rh-Ir  couples (see Table 1). 

The d9s 1 configuration for palladium has already been shown to give a 
good description of the palladium Fermi surface and de Haas--van Alphen 
scattering quantities (Dingle temperatures and cross-sectional area changes) 
in Pd(H) [23]. For this reason it seemed worthwhile to consider both the 
dos 1 and the dl°s ° ground state configuration for the Pt atoms in the host 
crystal. In Pt(H) the differences in Z~_,d and Po for these two configurations 
turned out to be very small. With Pt(d1°s°) the values Zwmd = 0.03 and Po = 0.24 
/z~ cm (at.%)-~ were obtained. These calculations account for the effect of 
charge transfer and lattice relaxation and should therefore be compared with 
the corresponding values in the fifth and eighth columns of Table 2. 

For the residual resistivity in the hydrides of Rh(dSs ~) and Ir(dTs 2) no 
alarming deviations from the corresponding values in Table 2 were found 
(Po = 0.28 and 0.32 ~ cm (at.%)- i respectively). However, the wind valence 
in these metals turned out to be sensitive to the configuration used. For 
Rh(H) and Ir(H) wind valences Z,,,~d= - 1 . 5 5  and + 3.44 respectively have 
been calculated. Although on a computational basis alone the large positive 
value in Ir(H) cannot be excluded, it certainly would represent an enigmatic 
exception among the generally negative or moderately positive wind valences 
in Fig. 1. Therefore it was preferred to use the results based on the Rh(dgs °) 
and Ir(d8s 1) hosts as the representative values. 

The last two columns of Table 2 show the values of the transport 
relaxation time 7, as calculated from the bulk resistivity at 900 K by means 
of eqn. (12), and the velocity integral ~fFS dSnkvnk. This relatively high 
temperature was chosen since, in order to enhance the mobility of the 
interstitials, most electromigration experiments will be done in this temperature 
region. Of course wind valences at lower temperatures can also be obtained 
by inserting the appropriate value of p(T) into eqn. (12). Due to an increase 
of r the magnitude of Zw~d will increase. (See for example Nb(H) and Ta(H) 
in ref. 24, where T = 3 7 5  K.) 

4. D i s c u s s i o n  

The numerical data on Z ~ d  and Po in Table 2 are represented graphically 
in Fig. 1 and Fig. 2 respectively. To guide the eye the values from complete 
calculations in a row (columns 5 and 8 of Table 2) have been connected 
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Fig. 1. Wind valence for hydrogen in row 5 (C), [], A) and row 6 (0,  I ,  A) transition metals: 
O, O, calculations for just the impurity; [:], R, calculations for an impurity plus charge transfer; 
A ,  A ,  complete calculations, also accounting for lattice deformation. 

by  a line. S ince  z i r c o n i u m  and ha fn ium are in their  h e x a g o n a l  p h a s e  at 
T =  9 0 0  K, the f .c .c ,  resul ts  are impl icated  in the  interpolat ion.  The hor izonta l  
l ine at Z ~ d  = + 1 in Fig. 1 s erves  as  an indicat ion o f  the  direct  v a l e n c e  part 
o f  Z*.  In a prev ious  s tudy it w a s  f o u n d  that  Z~rect w a s  a lways  r e a s o n a b l y  
c l o s e  to  unity  (0.7 <Zdirect< 1,5). This  cou ld  be d e d u c e d  f rom m e a s u r e d  Z* 
v a l u e s  and ca lcu lated  Z ~ d  va lues  for  h y d r o g e n  in nickel ,  pal ladium, vanadium,  
n i o b i u m  and tanta lum [24] .  

B e c a u s e  o f  structural  d i f ferences  b e t w e e n  the h o s t  lat t ices  and o w i n g  
to  different equi l ibrium s i tes  for  h y d r o g e n  in the  var ious  meta ls ,  n o  c lear 
trends  in Z ~ d  and Po are to  be  e x p e c t e d  a long  the  fifth or s ixth row.  
Interest ing c o m p a r i s o n s  in the  c o l u m n s  can  be made .  

F r o m  Fig. 1 and Table 2 it shou ld  be  n o t e d  that the  p r e s e n c e  o f  a first 
shell ,  pos s ib ly  de formed ,  d o e s  inf luence  Zwmd to a varying extent .  E x c e p t  in 
Mo(H)  the  effect  o f  latt ice d is tort ion is moderate ,  indicat ing that the  w ind  
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Fig. 2. Residual  resist ivity for hydrogen  in row 5 (C), [:3, ~ )  and  row 6 ( 0 , . ,  A)  t rans i t ion 
me ta l s  ( symbols  as  in Fig. 1). 

valence mostly is a property of the interstitial itself immersed in an electron 
gas with certain characteristics depending on the host metal. 

For the residual resistivity (Fig. 2) the situation is different. Generally 
a strong dependence of P0 on the presence of the first shell emerges. 
Conspicuous are hydrogen in technetium, rhenium, ruthenium, osmium, 
rhodium, iridium, palladium and platinum. Just a proton in the otherwise 
perfect lattice gives a vanishingly small resistivity increase. Only inclusion 
of the first shell leads to values of Po that, for instance for Pd(H), compare 
well with experiment [26]. Such behaviour might be understood in view of 
the anti-bonding part of the d band that is getting filled. At eF the atomic 
d orbitals are combined in an anti-bonding fashion which results in a low 
density of conduction electrons at the octahedral and tetrahedral sites. This 
means that the density of conduction electrons taking part in impurity scattering 
at the interstitial sites will be low when compared with the early fifth- and 
sixth-row transition metals. The residual resistivity in yttrium, lanthanum, 
zirconium, hafnium, niobium and tantalum due to only the proton reflects 
this. 

The influence of a radially outward displacement of the first shell atoms 
on P0 should be interpreted in terms of the character of the conduction 
electrons at er. When truly delocalized s electrons take care of the conduction, 
as in silver and gold, great sensitivity to the precise position of the first- 
shell atoms is not expected. More localized d electrons at eF were found to 
be rather sensitive to lattice deformation from calculations of the resistivity 
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increase due to lattice deformation in pure niobium and palladium [26]. 
Such behaviour is clearly reflected in the table: f rom Zr(H) or Hf(H) up to 
Pd(H) or Pt(H) displacement of the first shell results in a 50 -150% increase 
in Po. Y(H) and La(H) can be considered as intermediate cases since the d 
band starts getting filled in these metals. For  Ag(H) or Au(H) this influence 
of local lattice deformation is found to be small. 

On the whole the wind valences for the fifth row are more negative than 
those for the sixth row. A clear exception is formed by the Nb-Ta couple. 
Similarly the P0 values for the fifth row are larger than those for the sixth 
row. Here the b.c.c, metal couples Mo-W and Zr-Hf  form an exception. 
Although the simple ballistic model cannot  be expected to be valid in detail, 
these general observations are in line with it. Differences in Z~nd and P0 
between row 5 and row 6 metals in the same group are easily understood 
for the Ag-Au pair. A much larger Po value in Ag(H) than in Au(H) also 
implies, according to the old ballistic model, a much larger negative wind 
valence in Ag(H). The lower resistivity in Au(H) is due to the higher velocity 
of the s-like Bloch electrons which, at the same electron density, can carry 
higher current  densities. In none of the other  metals is the situation as 
simple. It was shown previously [24] that the value of Z~nd is determined 
by the field-induced charge distribution around the proton only, while Po is 
determined by the whole impurity cluster. This model explains the difference 
in sign as observed in the experimentally well-known systems Nb(H) and 
Ta(H). A positive wind valence corresponds to an electric dipole around the 
proton directed opposite to the external field. The dipolar charge distribution 
exerts a wind force on the attractive hydrogen potential in the direction of 
E, so Z~nd>0 in Nb(H). For Ta(H) the situation turned out to be more or 
less reversed, giving Z ~ d  < 0 in agreement  with experiment  too. Note from 
Fig. 1 that the positive wind valence for Nb(H) almost forms an exception 
among the dilute transition metal hydrides. 

Also in agreement  with experiment  is the sign of Z~nd in Y(H) [39], 
although its calculated magnitude is too small. This in turn is consistent 
w i t h  an ab  i n i t i o  calculated Po which is too small as well (experimentally 
Po = 3.10 t~i2 (at .%)- 1 [40]). Probably the difference between hexagonal 
yttrium and f.c.c, yttr ium will have contributed to this discrepancy. The 
results for Pd(H) are found to be in agreement  with experiment.  Calculated 
wind valences in Ag(H) are more negative than measured, according to the 
ballistic model compatible with an overestimated Po value. 

It is possible to give a rough estimate of the influence on Z ~ o  of 
the substitution of the f.c.c, lattice for the hexagonal lattice. On the basis 
of the simple ballistic model, mentioned in the introductory paragraph, 
an anisotropic bulk resistivity directly influences the wind valence. For 
some hexagonal metals the anisotropy in p(T) is known over a wide tem- 
perature range [41]. The ratio of pt,(900 K) ( i .e .  resistivity parallel to the 
basal plane) and p~ (900 K) (perpendicular  to the basal plane) equals 
1.3, 1.5 and 1.5 for yttrium, rubidium and osmium respectively. A direc- 
tional preference in the hydrogen motion (diffusion) could then result in 
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differences ranging from ± 15 to ± 25% with respect to a simple average 
of Pll and p~. 

In view of the lack of consensus concerning the magnitude of the direct 
valence it is worthwhile to draw attention to the systems for which the wind 
valence is very small, namely the hydrides of rhenium, osmium, rhodium, 
iridium and platinum. Such systems in principle provide a unique opportunity 
to investigate the direct valence almost directly. 

5. Conclus ions  

Wind valences and residual resistivities for hydrogen in all transition 
metals in the fifth and sixth rows of the periodic table have been calculated. 
Metals with a hexagonal lattice have been treated as f.c.c, or b.c.c, systems. 
For hexagonal and b.c.c, metals the tetrahedral position was chosen as the 
equilibrium position for the proton, in f.c.c, metals it was the octahedral 
site. 

The vanishingly small Po values of just a proton in an otherwise perfect 
lattice 0f technetium, rhenium, rubidium, osmium, rhodium, iridium, palladium 
and platinum can be understood in terms of the anti-bonding character of 
the states at the Fermi level. Accounting for a first shell of metal atoms 
resulted in appreciable values for Po. 

In most cases the wind valence was found to be much less sensitive to 
the presence of a perturbed first shell than P0. This clearly illustrates the 
fact that the wind valence comes about through the electron density directly 
around the proton. The wave function at the interstitial obviously is not very 
sensitive to alterations in the first shell, except for Mo(H). From the residual 
resistivity calculations it is concluded that the alloy wave function as a whole 
is influenced greatly by the first shell. 

The calculated values for Z~_~d and Po presented in this paper can serve 
as a guideline for future experiments. Estimates of Zw~d at temperatures T 
other than 900 K can easily be obtained by multiplying with a factor p(900)/ 
p(T). Direct measurement  of Zd~ect might be possible in those systems where 
Zwmd turned out to be very small. 

Altogether it must be concluded that multiple-scattering theory, developed 
in the KKR-Green function formalism, provides an excellent tool. Both 
electromigration of hydrogen in transition metals and the residual resistivity 
caused by the hydrogen have become much more transparent. Predictions 
were made. Experimental confirmation is awaited. 
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